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FOREWORD

Artificial intelligence in many of its facets has become an esoteric field that is
hard to be evaluated and properly appreciated by an individual who does not work
in the field. Experience indicates that research in this field carries perhaps a greater
risk of failure than other research prr:ects. In this situation, the decisions to
allocate fumds for particular projects become very difficult. The purpose of this
report is to alleviate this problem by providing an introdL&.,or. survy of some of
the ideas and techniques that have evolved in the vast field of artificial intelligence
in recent years, and by indicating some of the research areas that appear to be
promising.

The work reported here was funded under the Independent Exploratory
Development program element 62713N. This paper is the final report on the
research project in the field of general decision making and theorem proving on the
computer conducted at the Naval Weapons Laboratory between FY 1969 and
FY 1972. The project was terminated in June 1972.

This report was reviewed by Mr. Alfred H. Morris. Jr. and Mr. Hermon Thombs
of the Programming Systems Branch.

Released by:

RALPH A. NIEMANN
lead, Warfare Analysis Department
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ABSTRACT

This paper describes and evaluates theorem proving and its role in artificial
intelligence in non-technical terms. It discusses the general principles underlying
automatic theorem proving on the computer and considers the different strategies
and techniques that are used for improving performance. It is shown by examples
that theorem proving plays a central role iii artificial intelligence. The application of
theorem proving to automatic program writing is treated in detail. A candid
evaluation of the situation will reveal that further research in specific directions is
desirable and that certain other areas do not appear to be promising in the near
future.
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1. INTRODUCTION

Artificial intelligence in many of its facets has become an esoteric field that is
hard to be evaluated and properly appreciated by an individual who does not work
in the field. Experience indicates that research in this field carries perhaps a greater
risk of failure than other research projects. In this situation, the decisions to
allocate funds for particular projects become very difficult. The purpose of this
report is to alleviate this problem by providing an introductory su:vey of some of
the ideas and techniques that have evolved in the vast field of artificial intelligence
in recent years. and by indicating some of the research areas that appear to be
promising.

The objective is to build an intelligent machine capable of sensing and
understanding its environment, of reasoning about it, of making sensible decisions
under uncertainty. and of controlling its environment. For example, Stanford
Research Institute has built a robot equipped with wheels, arms, and a
television camera as an eye, connected to a computer as its brain [291. However,
most researchers carry out theoretical studies and write computer programs that
perform more specific tasks such as playing chess [211, proving mathematical
thorems [33,131, making conversation and solving simple problems, and constructing
programs from general non-algorithmic specifications of the program [401. These
computer programs normally require search in a large network and require complex
'ecisions based on incomplete information at the point where the decision must be
made. Among the approaches for this decision making process, we single out one
and call it the axiomatic approach. Here the original search and decision problem is
reformulated as a problem to prove a theorem from a set of hypotheses, and then
theorem proving methods and techniques for the solution of tnis problem are
applied. Other approaches may include assigning weights to the nodes in the
network and making !he decisions by searching through the network and evaluating
these weights or possibly modifying theii. In many cases a wide variety of tricks
and heuristics not based on a well developed theory is employed.

It is the purpose of this paper to describe and evaluate the axiomatic approach
in non-technical terms. We shall discuss the general principles underlying automatic
theorem proving on the computer and consider the different strategie,; and
techniques that are used for improving performance. We also show by examples that
theorem proving plays a central role in the field of artificial intelligence. A candid
evaluation of the situation will reveal that further research in specific directions is
well worth the money and that certain other areas do rot appear to be promising
in the near future.
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II. AUTOMATI LO&ICAL REASONING

Logical Rea oning involves analyzing given sentences (also called statements,
formulae, well frrie1 formulae) and infering new logically valid sentences from
them. Therefore, a h.nguage is needed in which sentences can be formulated, and
rules of inferen ar needed to produce niew logically valid sentences from old
ones. A language together with some rules of inference constitutes a system of logic.
A first order pr dicale calculus is such a system of logic comprising a first order
language L and s.me rules or inference.

The elements of a first order lang.iage L are constants, variables, function
symbols, predicate symbols, several propo.itional connectives such as - (not),
A (and), v (or), - (implies), aad the quantifiers for all and there exists. A
predicate is just a function with {true. false I as its range of values. "Firsi order"
means that functions do not take functions as arguments and that the domain of
the variables always contains data. not functions. Thus, in a first-order langu~age one
cannot express directly the situation that a certain statement involving a function
symbol f is true for all functions over the same domain as f. However, a
first-order language is still very rich and much of mathematics can be expressed
quite conveniently in it. Certain elements of the language, namely the propositional
connectives and the quantifiers, have a fixed universal interpretation (meaning).
However. constants, function and predicatc symbols may be given different meanings
depending on the circumstances For example, consider the statement

A
(x)(y)(Ez)(x = f(y,z))

which asserts that "for all x and y there exists a z such that x = f(y,z)". We may
interpret this statement as follows: The variables xy,z range over the set of
integers, the symbol = denotes the equality relation, f(y,z) is interpreted as the sum
of y and z. Then the above statement is true under this interpretation of the data
x, y, z and the operators = and f. and we may say that this interpretation is a
model for the statement. If, however, we modify this interpretation by letting f(y,z)
denote the product of y and z. then the above statement is false since for x = I
and y = 0 there is no z such that I = 0 -z. This modified interpretation is not a
model for the above statement, call it A. but i., a model for its denial -A.

The second part of a first-order predicate calculus is a set of rules of inference
that generate logically valid statements from given ones. This set should be powerful
enough to generate all the logicai consequences from a given set S of sentences, or
at least all of the important ones. In automatic theorem proving, we normally deal
with inconsistent (contradictory) sets S. Here the rules of inference shtould be
powerful enough to generate the explicit contradiction false, in which case the ru'es
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of inference are called complete. An example of a rule of inference which, by itself,
is not complete, is the so-called modus ponens which produces from the two
statements A and A - B the statement B. In the sequel, we shall normally consider
only one rule of inference, namely resolution.

In a first order predicate calculus, a certain set Z of basic statements is always
true. The statements in Z are called logical axioms. If we further require that an
additional set P of statements be true, then the first-order predicate calculus
becomes a first order theory. In this case r is called the set of (proper) axioms or
hypotheses and the logical consequences of r U Z are called theorems. This is the
general picture. For further details, the reader is referred to the excellent book by
Mendelson [28].

We can now formulate the basic problem in theorem proving as follows: If
A,.".-A n and C are statements, then prove that C follows from Al ,' .',A n ; i.e.,
prove that AA-A"AA. = C is a logically valid statement being true for all
interpretations. By a proof of C from Al ,"-,A n we mean a sequence of statements
(B,, ' ' ,Bm ) such that B. is C, and each B, is either a given statement A or is the
result of a rule of inference applied to some of the previous statements B,'",Bi t .

This problem might appear to be very difficult, and yet, it is well known that
it can be solved by a simple mechanical algorithm if it can be solved at all, that is,
if C does indeed follow from A, ,'",A n The algorithm is based on the fact that all
proofs in a predicate calculus can be syst':matically enumerated. Therefore, if there
is a proof of C from A, .. ".An then a brute force search through this enumeration
will turn up a proof and the problem is solved. However, if no proof exists then
the algorithm searches forever. In general, it is not possible to decide by an
algorithm whether a statement is logically valid o: not. A procedure that solves the
problem stated above is called a proof procedure.

Even though there exists in principle a proof procedure, we must consider the
problem of actually finding a proof of C from A1 ,'-'.An as unsolved. Searching

V - through the set P of all proofs, where a uniform strategy is employed that provides
no intelligent guidance to a small subset of P that contains a proof, is simply out
of the question. The set P is too gigantic. In practice, it is as impossible as to
search through the finite set of all chess games. Th'erefore, the existence of such an
algorithm just states that the problem is computable, that it makes sense to try to

Rconstruct a computationally feasible procedure. For a noncomputable problem, such
an undertaking would be futile.

Basic research in theorem proving during the past ten years has concentrated on
developing general techniques, as well as special strategies for certain special theories,
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that help to con truct computationally feasible proof procedures. These procedures
use the proof by contradiction method. If A is the statement to be proved, then
the denial -A of A is adjoined to the set r of hypotheses and this combined set
of statements must now be inconsistent; i.e., must lead to a contradiction. It is easy
to show that rI 1 (-A) is inconsistent if and only if A is a logical consequence of
r. This means £hat our everyday mathematical reasoning using the proof by
contradiction method is sound, of course.

It turns out that the statements one is dealing with in theorem proving can all
be assumed to be in a very simple form. This is the case because any finite set Z
of statements can be transformed into a finite set S of statements in quantifier free
normal form such that S is inconsistent if and only if E is inconsistent. Such a
transformation is described by M. Davis [7] and is easy to implement on a
computer. The transformed set S is a finite set of elements called clauses, each
clause is a finite disjunction of items called literals, and each literal is either an
atomic formula or a negated atomic formula. An atomic formula is, as may be
expected, a well formed formula that does not contain any propositional connectives
or quantifiers. We also write a clause R Iv .vk just as a list of literals (" "
A clatuse C = (£1'',k) represents the statement C = (xi)..(xn)("iv.Vgk) where
x ,..-,xn are all the variables occuring in the literals of C and each (xi ) means "for
all xi". Thus all variables in a clause are implied to be universally quantified. A set
of clauses S = tic,'-.Cnj represents the statement CA-..-AC . The empty clauseII M
denoted by o, plays a special role. This clause can never be made true by any
interpretation and represents, therefore, a contradiction.

We see that the general theorem proving problem is now reduced to the
problem of showing that a finite set of clauses is inconsistent. An algorithm that
solves this inconsistency problem is called a refutation proceduce.
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tV
111. REFUTATION PROCEDURES FOR SETS OF CLAUSES

If a statement is true in general. that is, for all values of ihe variables
occurring in it, then it is true for specific cases. Therefore, replacing v.riables in a
clause C by variables or constant expressions will produce a new clause C' which is
a logical consequence of C. We say C' is an instance of C, and if C does not

Fcontain any variables then C' is called a ground instance of C.

Early refutation procedures 17,81 wer. ed on the fundamen, ict known as

the Herbrand Theorem, that a set Sc ... ;. is inconsistent if and oviy if a finite
set of ground instances of S is inconsistent. Thus we can produce from the set S
progressively larger sets Sn of ground instances of clauses in S and check if Sn is
inconsistent. This will give a refutation procedure if the sets Sn (n 1,2,") are
generated in a certain systematic manner. The inconsistency of a set of ground
clauses can be checked efficiently using the Davis-Putnam procedure [8,131.

The difficulty with this approach was the enormous growth of the sets Sn . To
alleviate the situation, a method had to be found that avoided the ground
instantiation. Such a method was proposed by J. A. Robinson in 1965 1321.

Robinson succeeded in defining a rule of inference called resohtion or
resoluition operate,- whi-h produces one or more new clauses called resolvents from
two given parent clauses and has the important property that it is 5ound and
complete. This means tlhat a resolvent is a logical consequence of the parent clauses
and if the original set of clauses is inconsistent, then this rule of inference will
eventually turn up the explicit contradiction represented by the empty clause 0.

Resolution can be considered as a generalization of the modus ponens. The
following description may give a iough idea of how it works. fwo ground clauses
have a resolvent if one clause contains a literal which occurs negated in the other
clause. T hus, if _7 = ( , l ' ' ) and C ' "( ,i ' , m then the union of the :

literals '£,Rk in C and Q1" "Qm in C' is a resolvent of C and C'. The literals 2
and 'k are said to be complementary. Thus, resolution or the ground level is
elimination of complementary literals. If the parent clauses C and C' contain
variables then first a substitution is made that produces complementary literals and
then these complementary literals are eliminated just as in the ground case. The
heart of the matter is to find these substiattions and it was probably Robinson's
greatest achievement to define an algorithm called most general unification algorithm,
that computes the proper substitutions if there are any. This algorithm is of crucial
importance in present day theorem provers and plays the fun ,amental role of basic
arithmetic in scientific programs. An efficient implementation Vf it has recently been
proposed by Robinson [351.
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It is important that resolution is defined in such a way that the set of all
resolvents of a finite set of clauses is finite. Thereforz, one can generate all of the
resolvents from a given set S, adjoin the new clauses to S, and compute again all
resolvents. In this manner, layer after layer of resolvents is generated. This process
terminates when 0 is generated. This must occur eventually if the set S of clauses is
inconsistent since resolution is complete. The history of generating 0 then represents
a proof. A sequence (Ci ,'. .,C) such that Cn = ci and each Ci is either in S or is
a resolvent of some previous clauses C,.",Ci-, is called a refutation of S.
Recalling the concept of a proof of a formula, we see that a refutation is just a
proof of 0 from S.

This new approach, revolutionary as it was, s.ill suffered from the fact that,
before a refutation was found, too many resolvents had to be computed, the
majority of which were irrelevant ballast. The question was: How can one make the
resolution operator more seleztive so that a priori the resolvents of many clauses,
are recognized to be irrelevant for the proof under consideration and are therefore
never computed? This idea of defining a restrictive (or refined) resolution operator
which is still complete underlies most papers that appeared after the introduction of
resolution. It is indeed possible to put a variety of conditions on the "lauses and to
compute resolvents only if these conditions are satisfied. We give a brief outline of
the most important cases.

An interpretation will assign to every statement a truth value. Therefore. an
interpretation will partition any set of clauses into two disjoint sets, one set
containing true clauses and the other containing false clauses. It cdn be proved that
the only resolvents that need be computed are those which can be derived from
clauses, one of which is false under an arbitrary but fixed interpretation. Of course,
this fact gives rise to a great variety of refined resolution strategies depending on
the interpretation being used. They are all called semantic strategies since
interpretations are involved. There are many interesting special cases. For example, if
theiz are no false clauses then obviously the set S is consistent since the
interpretation is a model of it and we are done. In this case, no proof of 0 can be
found. Semantic strategies were discovered by Slagle [371 and independently in a
slightly weaker form by Luckham [241. A weak but very important version of a
semantic strategy, called the set of support strategy, was proposed very early by
Wos, Carson and G. A. Robinson [41].

A second type of condition that can be imposed on the resolution operator has
to do with a geometric property of refutations. One can prove that if S is
inconsistent then there is always a linear refutation. A linear refutation is a
sequence (C1 ,***',Cn_,C) such that Cn is u and such that each C, is in S oi 3 a
resolvent of Ci_ and a clause which is in S or is some previous (,, j < i.
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Certain other conditions can be combined with linearity resulting in finer
strategies. Unfortunately the semantic condition cannot be combiped with linearity
without losing completeness. Linear strategies have been discussed by Luckham 1251,
Anderson and Bledsoe 121, Loveland 1231, Kowalski and Kuehner 191,
Reiter 1311, Hubei and Morris 114,151, and Chang and Slagle 151.

A third kind of condition can be obtained from partially ordering the literals
occurring in S (A-Ordering) or totally ordering the clauses in S (C-Ordering).
Strategies using A-Ordering or C-Ordering have been introduced by Slagle 1371 and
Reiter 1311. They are also discussed in Kowalski and Hayes 1181 and Huber and
Morris 113,151.

Frequently the situation occurs that a clause C' in S is a consequence of a
clause C in S. As may be expected, the weaker clause C' can normally be
discarded. Strategies that allow this are called subsumptive (13,141.

It appears that the attempts to define restricted resolution operators that give
Vrise to a drastically improved strategy have hit the end of the road. We have now

much finer strategies than, say, seven years ago, and we can now solve simple
theorem proving problems that could not be solved seven years ago. And yet, it is
quite discouraging to see that more complex problems are still far out of the range
of present day theorem provers using those strategies. There are two avenues of
research which have been tried and which are promising to improve the situation.
One is to use larger inference steps and the other is to use special inference rules
for handling certain special basic symbols like = or E.

The inference rules considered so far draw a conclusion from two statements
(clauses). One would expect that one could draw better conclusions from more than
two statements. Therefore proofs based on inference rules that use more than twofstatements should be shorter and easier to compute. Such inference rules have been
proposed by Robinson [331 (clash resolution) and by Slagle 1371 (maximal clash
resolution). It turns out that maximal clash resolution is a great tool for theoretical
work, but for practical computation this extended inference rule does not appear to
help much. It is certainly true that these inference rules do not have to be applied
as frequently as ordinary pairwise resolution, but, unfortunately, one application is
so tremendously much more involved.

There is, however, another way of obtaining better inference rules. Instead of
looking at more clauses, the machine can be made to remember and put to use the
history of previous inference steps. This is a totally new idea. The resolution
operators considered so far are completely local in their scope. When the operator is
applied, then the resolvent is computed and kept if it is new, but the rest of the
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information that was available when the resolvent was inferred is liscarded and the
next inference step is unaware of what the previous steps did. One certainly would
not expect much of a person who is so totally unaware of past events, even if he
is quite reliable and fast in his work. It was this fascinating idea to save the
relevant history of previous resolution steps and to put it to use when the next
inference is made which was systematically developed in the paper Contracted
Resolution by the author and A. Morris [151. The technical approach of Contracted
Resolution is based on Loveland 1221. Some of the results of Contracted Resolution
have been discovered independently and published earlier by Kowalski [191 but the
authors of [151 were not aware of this. A theorem proving system based on
Contracted Resolution was written is LISP for the CDC 6700 computer by Huber
and Morris. The performance of this system compared favorably with the other
theorem provers.

The second approach to improve the efficiency of theorem provers is to handle
the basic mathematical relations like =, E, C by special inference rules. The general
idea is to absorb most of the properties of these relations into an inference rule
that is used in addition to resolution and to drop the axioms that define these
properties explicitly. For example, Wos and G. Robinson proposed and proved the
completeness of such an inference rule for the equality relation, called
paramodulation [42], which is essentially a substitution rule. In this case, most of
the axioms describing the properties of = need not be included in the set of
hyIotheses from which the proposed theorem is supposed to follow. Only certain
"reflexivity clauses" must be included, aamely x = x and f(x ,',x = f(x ,-",x)
for each function symbol f occurring in the set S of clauses, where n, of course, is
the number of arguments of f, and x and x l , ' ' - ,xn are variables. It is still an open
problem if paramodulation together with resolution is complete if all the reflexivity
clauses are dropped except x = x.

Primary paramodulation is a much more restrictive inference rule, where
substitution is normally made only into the arguments of the predicate symbol but
not into a subexpression embedded deep inside of an atom. Completeness of
paramodulation together with resolution was proved by Wos and G. Robinson 1421,
the completeness of primary paramodulation together with resolution independently
by Kowalski 1171, Chang 141, and by Huber and Morris [141. This approach of
handling the equality symbol by a special inference rule was q, ite successful and
one would like to do the same thing for other basic symbols like E and C. Slagle
attempts in [381 to formalize this approach and to set up a technology for defining
special inference rules for basic mathematical symbols. However, it is not clear yet
how effective this is for practical computation.

8



In summing Lip this section, we must say that even though much progress has
been made in the field of theorem proving in recent years. it is still by far not
enough to handle complex problems. It must be realized that in the applications,
which will be discussed in the next section, the theorem prover is the weak point.
With a powerful theorem prover some of these applications could become quite
spectacular.

94
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IV. APPLICATIONS

Resolution based theorem proving plays a central role in the field of artificial
intelligence. For example, it can be used directly for proving a proposed theorem in,
say, elementary group theory In this case a theorem prover would be asked the
question: "Why does statement A follow from the set r of axioms?" The answer
will be a proof of A from r, actually a refutation of 1 U -Al . More generally,
one could ask: "Does statement A follow from r?" The possible answers would
be: "Yes, here is a proof of A from I': .. ", or "No, here is a proof of -A
from 1:..", or "I cannot find the answer within the given time limit". This last
alternative cannot be eliminated, no matter how much computation time is allowed,
since the predicate calculus is undecidable ,(Church [61).

However, a system having theorem proving capacity can be uhed for solving
many other problems. The general approach 110,111 is this: Facts about the
problem environment are represented as statements in a first-order language.
Questions are formulated as conjectures in this language to be proved. An extended
theorem prover [101 will construct a proof of the conjecture and as a by-product
of this it will generate an answer statement to the question associated with the
conjecture. Using this approach C. Green [111 was able to apply theorem proving
techniques to general question answering, general problem solving (the tower of
Hanoi puzzle, the monkey and the bananas problem), robot problem solving of the
Stanford Research Institute robot, and automatic program writing.

The problem of constructing an answer to the original question can also be
separated from the problem of finding a proof of the associated conjecture [261.
Using this approach, the answer statement is derived from the refutation of the
denial of the conjecture and all hypotheses by a general extraction process.

All applications mentioned above are still in an experimental stage. To illustrate
the ideas more clearly, we shall now describe in some detail the problem of
automatic program writing which is possibly one of the most general and attractive
applications.

When a programmer writes a program he represents functions as algorithms in
some programming language. How difficult this task is depends to a great degree on
how the functions are defined originally.

Functions may be defined in many different ways which can be classified as
algorithmic and non-algorithmic definitions. An algorithmic definition specifies in a
step-by-step or recursive manner how for any given argument the function value is
to be computed, whereas in a non-algorithmic detinition merely the relationship

10



between the argument and the function value is given. For example, consider the
greatest common divisor of two integers:

(i) gcd: gcd(x,y) is the largest positive integer that divides both x and y
if x * 0 or y 0 0.

(2) gcd: (x)(y){x * 0vy / 0 =
(Ez)lz/xAz/yA(u)1u/xAuiy U < Zil)

(3) gcd: (lambda(x y)(prog(z)
A (cond((zerop y)(return(abs x))))

(setq z(divide x y))
(setq x y)
(setq y(cadr z))
(go A)))

(1) and (2) characterize the function gcd in a non-algorithmic manner, the only
difference being that (I) does it in English and (2) does it in a first order language.
However (3) expresses gcd as an algorithm, essentially the Euclidean Algorithm, in
the programming language LISP. In general, a formalism in which algorithms are
expressed is called a programming language. The first-order language used in (2) is
not a programming language.

The task of transforming an algorithm represented in one language to a
corresponding algorithm repiesented in another language is performed by a translator
(compiler, assembler). Translator technology has been highly developed over the past
twenty years and we shall not consider this problem here. It is, however, a very
different and much more difficult problem to construct an algorithmic repr'esentation
of a function f from its non-algorithmic definition and this is what we mean by
automatic program writing (or synthesis). A program that can solve this problem
must have available a large body of knowledge concerning the mathematical
environment of the function f. It must know about the mean;,ig of the
mathematical symbols occurring in the definition of f, about the target programming
language, and it must be able to reason about it and to assemble the functional
units of the target programming languag properly to an algorithm that reprerents f.

The theoretical foundations for automatic program writing go back to
S. Kleene [161, who did the original work relating recursive function theory to
intuitionist logic. However, R. Waldinger [391 was the first one who applied
Kleene's method for automatic program witing. His approach is as follows: An
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input relation D ,m(x ,-..x n) defines the domain of the function f as the collection
of all n-tuples fx1 ,...,xn) for which Dom(x, "',x,) is true. Also, a statement of
the form

w: (xd)" "(xn [Don(x ,'",Xn) ="(Ey)R(x, ,'X n,Y)]

asserts that for each (x ,-',x n ) in the domain of the function there exists an
element y (that is the function value) such that the relation R(xl,'",ny) holds.
The knowledge concerning the properties of the mathematical symbols occurring in
Dom(x,,x) and R(x, n,Y), which is relevant for the problem at hand, is
represented as a set I' of statements (hypotheses). Now a refutation of r u {-w}
is generated which is required to be constructive in a very precise sense. Roughly
speaking this means that in the course of generating the refutation under certain
conditions only such symbols that are defined in the target programming language
must be used. When the refutation is generated, certain substitutions are made in
each resolution step which, when properly composed, will define an instance of the
variable y. This instance is the function value for x1 ,-. ,xn . Thus, %%hen the
refutation is found, then a post processor will collect the relevant substitutions and
assemble them properly as assignment statements. Since the substitutions depend on
the argument data (xi ."'*.Xn), t!,erefore the generated program will, in general, also
contain conditional GO TO statements. The main feature of this post processor is that
it does not involve any search or decision making. It just assembles certain
prefabricated program pieces together in a way that is directly controlled by the
refutation. It works very much like a syntax directed compiler and might therefore
be called a refittation directed compiler.

This initial approach to automatic program writing is quite limited. Only
programs consisting of a seqaence of assignment statements, conditional GO TO
statements and RETURN statements can be oroduced. It is clear that this is not
sufficient machinery for useful applications.

It turns out that recursion and loops are closely connected to the principle of
mathematical induction. The induction axiom

P(O)
A (z)(P(z) P(z + I))
S(x)P(x)
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says that if a property P is true for 0 and P carries over from n to n + I then P
is true for all numbers 0,1,2,--'. We let (x)P(x) stand for (x)(Ey)R(x,y), which
means that for every x there is a certain y (namely the function value f(x) of x)
such that R(x,y) is true. The objective is now to prove (x)P(x) and to produce as a
by-product the function f.

A more detailed analysis reveals that with P(O) [= (Ey)R(0,y)] a constant c is
associated, namely that value c of y for which R(O,c) is true, that with
(z)(P(z) - P(z + 1)) a function g of two arguments is associated, and that f is
defined in terms of c and g as follows:

f(O) = c
f(x + ) = g(xjf(x)).

The fact that f is expressed in terms of c and g directly corresponds to the fact
that (x)P(x) is a logical consequence of P(0), (z)(P(z) - P(z + I)), and the induction
axiom.

Now the automatic program writer can be equipped with the capacity to
produce programs containing recursion and loops as follows: First P(0) is proved
and c is generated as a by-product. Then (z)(P(z) P(z + 1)) is proved and g is
generated. The program writer has a program scheme available that represents the
above function definition of f in terms of c and g. This program scheme may be
recursive or in loop form. Thus, the problem of finding f is in effect broken up
into two subproblems, namely to find c and to find g. Then the induction principle
is used to compose c and g properly to the function f which we wanted to
construct originally.

Slightly different approaches to automatic program writing have been proposed
by C. Green [III and by Lee, Chang and Waldinger 1201. A very readable paper
on this subject has been written by Z. Manna and Waldinger [271. The same
techniques can also be used for program debugging and program simulation I11. It
is conceivable that automatic program writing can be developed to a technology
similar to the translator technology. However, it seems to the author that the
theorem proving approach above is insufficient and that new ideas must come in.
For example, in the field of proving the correctness of programs various techniques
have been developed, most of which are based on a simple minded but ingenious
idea of R. Floyd 191. Possibly a combination of these and other ideas will give a
breakthrough.

13
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V. CONCLUDING REMARKS

The axiomatic approach in Artificial Intelligence looks at every problem as a
theorem provirt problem. This unified approach is theoretically simple, but
practically weak The main reason for this may be that there is only one basic and
very general i .ference machinery available, namely resolution in the predicate
calculus (with )r without equality). The goal to handle everything by one basic
method seems to be too ambitious. A system which would have a variety of
different, normally incon-plete, inference mechanisms available, using one or another
depending on the problem area would probably be eminently more powirful. The
problem is that special inference systems for particular areas have lot been
developed yet except in a very rudimentary form such as special handling of the
equality symbol 136,141 of the set theoretical symbols C and E [381, ant of < in
analysis 131. Also, it is not clear at all how to organize such a complex ;ystem so
that the computer can choose the appropriate inference system in which to operate.

In research projects, in particular in those involving large progiams, the
generality and extendability of certain techniques and methods that are being used
are in gVncrmi m3re important than the immediate results. For example, .:uppose a
program knows ebout a very restricted world of simple geometric bodies, lhke cubes,
cylinders, and pyramids, and can understand commands in English to move an object
and to put it on top of another body, etc... If the techniques and metaods used
by the program to solve its problems depend to a great degree on this special
environment, then this program is no! of much value since nobody is interested in a
system that can understand sentences concerning only this restricted world of cubes
and can respond intelligently. Wlh.t we are interested in are the prindiples and
techniques used in the program and how far they would carry in a much more
complex environment, given for example by a collection of ships of differnt types,
their positions and functions, a distribution of sonar bouys and the tasl, to hunt
down an enemy submarine hidden somewhere among the ships.

It i; the potential o. the principles and methods for wider application, which is
most itrortant. From this viewpoint it appears that within the theorem proving
approach to artificial intelligence certain research directions still have a tiemendous
potential and therefore research in these areas should be carried on. However, it is
becoming more and more apparent that the effort to obtain complete stritegies by
refining existing strategies - that is. by imposing ;,n extra condition on the parent
clauses that must be satisfied before an inference is computed from them - are of
diminishing return. Also, completeness is a theoretica! concept s milar to
computability. The implementation of any complete strategy on a computer
necessarily becomes incomplete because computer time and storage space is bounded,
not only finite. Therelore. in practice, if a program solves say 90% of all problems
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of a certain representative set of henchmark problems in a reasonable time, then
this fact is more important than the completeness of the underlying strategy.

The following directions of research seem to be promising:

1. In automatic program writing the theorem prover operates in an
environment determined by a programming language L that is the language
in which the program is to be written. L can be considered as being
characterized by its interpreter which actually executes the programs. The
interpreter can be regarded as a very powerful machine which is not aware
of what it is doing. On the other hand, the theorem prover is aware of
what it is doing, it can reason, but it is weak in its computational power.
Thus, we have the interpreter which is powerful but stupid, and the
theorem prover which is intelligent but weak. It would indeed be very
desirable to equip the theorem prover "Vith some of the power of the
interpreter. For example, the interpreter immediately says that 3 = I is
false wihile the theorem prover must painfully construct an explicit
refutation of it. Thus, the general idea is to incorporate computing power
of the interpreter into the theorem prover. This is in the spirit of Bledsoe
when he writes 13]: "A source of power to a mathematician is his ability
to leave to calculat,-n those things that can be calculated and thereby
freeing his mind for the harder task of finding inferences."

2. The axiomatic appioach considers theorem proving as basic and reduces, at
least partially, olier problems to theorem proving problems. In this way,
all technique., developed in this one field carry over automatically to other
areas. Since thcorem proving has been studied extensively in recent years
and various techniquc, arc available, this approach seems natural. Yet,
theorem proving techniques do not directly come to grips with the basic
issue of decision making in a situation where the available information
does not stitfice to deteomine uniquely the action to be taken. Theorem
proving programs investigate every situation that can be reached from the
present one using a certain (complete) strategy. Thus every path which is
possible Linder the strategy being used is followed until the first successful
one is located which represents a solution, that is, a proof of the theorem.
Therefore making a correct decision ri a certain situation may be
equivalent to solving the whole problcm starting from the present situation.

As one of the applications of theorem proving we described automatic
program writing. Here certain primitive function elements are assembled
into a program in such a way that it satisfies the initial specificetions.
However. if one can develop another more direct method of composing the
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program from its elementary constituents then one may regard this
techniqu of automatic program synthesis as basic and apply it to theorem
proving is follows: Consider a rule of inference as a primitive function fi,
taking s me statements as arguments and yielding a statement as its value.
f serve as a building block for constructing composed functions. Then a
proof is an expression represented by a composed function applied to its
argumen s. The problem of finding a proof can now be reformulated as
follows: Find a list (a1 ,'..,a n) of statements each of which being in the
given set S, and a function f of n arguments, f being expressed ii terms
of the primitive functions fi, that represent rules of inference, such that
f(al...',an ) is the statement that is to be proved. If we use the p.:oof by
contradiction method then f(al,-',a) will be the explicit contraction 0.

Thus, if one can develop direct techniques for solving the problem of
constructing functions that satisfy certain conditions, then it appears
natural to consider this problem as basic. Progress in the solution of this
problem would automatically carry over to theorem proving anti other
fields of artificial intelligence.

3. Finally, the implementation of a system capable of proving, reason- ng, and
making decisions on a computer is a major research project in itself. One
problem is to study and optimize certain functions representing, so to
speak, the basic arithmetic of the system (i.e.. substitution, most general
unification, factoring, subsumption). The major problem, however, is the
overall organization of such a system, the incorporation of powerful
heuristics, and the implementation of a device for handling any heuristics,
that are suggested by a user, in a systematic manner. By a heuristic, we
mean a computational rule which in many cases helps to compute the
desired result but in other cases it does not. Typically. a heuristic utilizes
a simplifying assumption which is truc in many cases but not in general.
Here it must be emphasized that the contracted resolution strategy [151
simplifies the organization problem tremendously. since it is an input
strategy, which means, that at least one parent clause of a resolvent is
always a clause in the originally given set S. This fact appears to be the ,
major advantage of this strategy which, on the other hand, has the
disadvantage that each -ingle inference step is quite complex.

It seems almost impossible to anticipate all of the conceivable strategies,
heuristics, and special assumptions that a user might want to employ, and
to provide appropriate routines for them. The most natural thing to do is
to provide the basic theorem proving machinery in the forn of a
programming language and to let the user program his problems. Such a
language should be gradually developed and implemented on the computer at
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the same time. Initially, it should contain the following components: one or
more basic inference operators, the basic building blocks for defining
search strategies and heuristics, and a flexible linkage system that ailows
for dynamic binding of variables to data, function definitions, and
assumptions. The structure, feasibility, and implementation of a theorem
proving language appears to be a worthwhile future project. A study of
application prob!ems will naturally go along with it.

Sometimes the argument can be heard that the computer hardware has not
yet developed far enough to allow for the building of an intelligent machine. The
author disagrees with this viewpoint. It is true that for most artificial intelligence
problems much more memory is needed. However, even if we had all the memory
in the world, we still would not know how to organize theorem proving programs
so that tle computer could draw intelligent conclusions in a complex environment
of assumptions within a reasonable time. Our knowledge about the theoretical
principles upon which a system capable of automatic reasoning must be built is still
scanty. Thus, it appears that the time when we will have intelligent machines
around us doing much of the work now being done by humans is still far away.
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